$NEt_4[(\eta^5-C_5H_5)Mo(CO)_2Se_2]$; Synthese und Kristallstruktur

Jörg Adel, Frank Weller und Kurt Dehnicke *

Fachbereich Chemie der Universität Marburg/Lahn, Hans Meerwein-Strasse, D-3550 Marburg (Deutschland)

(Eingegangen den 21. Dezember 1987)

Abstract

NEt₄[$(\eta^5-C_5H_5)Mo(CO)_2Se_2$], as black crystals, has been prepared by the reaction of tetraethylammonium polyselenide with $[(\eta^5-C_5H_5)Mo(CO)_3]_2$ in ethanol solution at room temperature. The compound was identified by an X-ray diffraction study: space group $P2_1$, Z = 2, R = 0.048 for 2970 independent, observed reflexions. The lattice constants at 18°C are: a 826.9; b 1004.7; c 1201.3 pm; β 107.88°. The compound consists of the cation, NEt₄⁺, and the anions $[(\eta^5-C_5H_5)Mo(CO)_2Se_2]^-$, in which the molybdenum atom is surrounded by a η^5 -bonded cyclopentadienyl ring, two carbonyl ligands, and the η^2 -bonded diselenide group, to give Mo–Se distances of 260 pm.

Zusammenfassung

NEt₄[$(\eta^5-C_5H_5)Mo(CO)_2Se_2$] entsteht in Form schwarzer Kristalle durch Einwirkung einer Tetraethylammoniumpolyselenidlösung auf [$(\eta^5-C_5H_5)Mo(CO)_3$]₂ in Ethanol bei Raumtemperatur. Die Verbindung wurde durch eine röntgenographische Strukturanalyse charakterisiert: Raumgruppe P2₁, Z = 2, R = 4.8% für 2970 unabhängige, beobachtete Reflexe. Gitterabmessungen bei 18°C: a 826.9; b 1004.7; c 1201.3 pm; β 107.88°. Die Verbindung besteht aus NEt₄⁺-Ionen und Anionen [$(\eta^5-C_5H_5)Mo(CO)_2Se_2$]⁻, in denen das Molybdänatom von einem η^5 -gebundenen Cyclopentadienylring, von zwei Carbonylliganden und von der η^2 -Diselenidgruppe mit Mo-Se-Abständen von 260 pm umgeben ist.

Einleitung

Polyselenidokomplexe von Übergangsmetallen sind bisher nur in geringer Anzahl beschrieben worden. Strukturell gesicherte Beispiele sind [IrSe₄(Me₂PCH₂CH₂-PMe₂)₂]Cl [1], [$(\eta^5-C_5H_5)_2Cr_2(CO)_4Se_2$] [2], (PPh₄)₂[Fe₂Se₂(Se₅)₂] [3], [V₂(Se₅)-(C₅H₄CH₃)₂] [4], (PPh₄)₂[W₃Se₉], (PPh₄)₂[W₂Se₉], (PPh₄)₂[W₂Se₁₀] [5], (NEt₄)₂-

 $[V_2(Se_2)_4Se_5]$ [6] und $[(\eta^5-C_5H_5)_2TiSe_5]$ [7]. Wir fanden nun in der Einwirkung von alkoholischen Tetraethylammonium-polyselenidlösungen [8] auf $[(\eta^5-C_5H_5)-Mo(CO)_3]_2$ einen einfachen Zugang zu dem Diselenidokomplex NEt₄[$(\eta^5-C_5H_5)-Mo(CO)_2Se_2$], über den wir im folgenden berichten.

Synthese und IR-Spektrum von $NEt_4[(\eta^5-C_5H_5)Mo(CO)_2Se_2]$

Bei der Einwirkung einer ethanolischen Lösung von Tetraethylammonium-polyselenid, deren Zusammensetzung etwa der eines Hexaselenids entspricht [8], auf eine Suspension von Cyclopentadienyl-molybdäntricarbonyl entsteht in langsamer Reaktion neben einem schwarzen Niederschlag eine schwarzbraune Lösung, aus der nach Einengen und Abkühlen die Titelverbindung kristallisiert:

$$(\text{NEt}_{4})_{2}\text{Se}_{6} + \left[\left(\eta^{5} - \text{C}_{5}\text{H}_{5} \right) \text{Mo}(\text{CO})_{3} \right]_{2} \rightarrow 2\text{NEt}_{4} \left[\left(\eta^{5} - \text{C}_{5}\text{H}_{5} \right) \text{Mo}(\text{CO})_{2}\text{Se}_{2} \right] + 2\text{CO} + 2\text{Se}$$
(1)

Der Verlauf der Reaktion entspricht einer Oxidation des Molybdäns von +I nach +II. Das hierbei gebildete graue Selen wird zusammen mit einer noch nicht identifizierten Molybdänverbindung abfiltriert. NEt₄[(η^5 -C₅H₅)Mo(CO)₂Se₂] bildet schwarze, kompakte, nur wenig feuchtigkeitsempfindliche Kristalle, die in unpolaren Lösungsmitteln unlöslich sind. Im IR-Spektrum beobachten wir zwei CO-Valenzschwingungen bei 1875 und 1770 cm⁻¹, die im Vergleich zu dem IR-Spektrum von [(η^5 -C₅H₅)Mo(CO)₃]₂ (1960; 1916 cm⁻¹ [9]) kräftig langwellig verschoben sind. Die Ursachen hierfür sind die höhere Oxidationsstufe des Molybdäns und die bindungslockernde negative Ladung des Komplexions. Neben den Banden des NEt₄⁺-Ions und der Cyclopentadienylliganden tritt eine neue mittelstarke Absorption bei 305 cm⁻¹ auf, die wir einer Mo-Se-Valenzschwingung zuordnen. Über MoSe-Valenzschwingungen liegen nur wenige Informationen vor; in den bisher bekannten Beispielen wird sie im Bereich von 250 bis 320 cm⁻¹ angegeben [10].

Kristallstrukturanalyse

Tabelle 1 enthält die kristallographischen Daten und Angaben zur Strukturlösung, Tab. 2 die Bindungsabstände und -winkel, Tab. 3 die Atomkoordinaten *.

Die Verbindung besteht aus NEt₄⁺-Ionen, deren C-N-C-Bindungswinkel von 103.1 bis 113.5° variieren und Anionen $[(\eta^5-C_5H_5)Mo(CO)_2Se_2]^-$, in denen das Molybdänatom von einem η^5 -gebundenen C₅H₅-Ring, von zwei Carbonylliganden und von der η^2 -gebundenen Diselenidgruppe umgeben ist (Fig. 1). Beide Ionen befinden sich auf allgemeinen Lagen; die nichtzentrosymmetrische Raumgruppe $P2_1$ lässt Chiralität für das Anion erwarten. Unter Berücksichtigung der anomalen Dispersion haben wir mit demselben Datensatz die zu Fig. 1 invertierten Koordinaten in die Strukturrechnung eingesetzt, um auf diese Weise die absolute Konfiguration zu ermitteln. Der Zuverlässigkeitsindex stieg dabei auf 5.8%, so dass die in Fig.

^{*} Weitere Einzelheiten zur Kristallstrukturuntersuchung können beim Fachinformationszentrum Energie, Physik, Mathematik GmbH, D-7514 Eggenstein-Leopoldshafen, unter Angabe der Hinterlegungsnummer CSD-52831, der Autoren und des Zeitschriftenzitats angefordert werden.

Tabelle 1

Kristalldaten und Angaben zur Kristallstrukturbestimmung von $NEt_4[(\eta^5-C_5H_5)Mo(CO)_2Se_2]$

Gitterkonstanten	a 826.9(2); b 1004.7(2); c 1201.3(6) pm	
	β 107.88(3)°	
Zellvolumen	949.8 Å ³	
Zahl der Formeleinheiten pro Zelle	Z = 2	
Dichte (berechnet)	1.77 g cm^{-3}	
Kristallsystem, Raumgruppe	monoklin, P2 ₁	
Ausgelöschte Reflexe	k = 2n + 1 für 0k0	
Messgerät	Vierkreisdiffraktometer, Enraf-Nonius	
Strahlung	Mo K (Graphit-Monochromator)	
Messtemperatur	18°C	
Zahl der Reflexe zur Gitterkonstanten- berechnung	16	
Messbereich, Abtastungsmodus	$1^{\circ} < \theta < 27^{\circ}, \ \omega$ -scan	
Zahl der gemessenen Reflexe	4431	
Zahl der unabhängigen Reflexe	3805	
Zahl der unbeobachteten Reflexe	835 $F_0 > 5\sigma F_0$	
Korrekturen	Lorentz- und Polarisationsfaktor, empirische	
	Absorptionskorrektur, μ 43.6 cm ⁻¹ [13]	
Strukturaufklärung	Patterson-Methoden	
Verfeinerung	Kleinste Fehlerquadratesumme	
Restriktionen	Alle H-Atomlagen berechnet	
Verwendete Rechenprogramme	CADLP [14], SHELX-86 [15], ORTEP [16]	
Atomformfaktoren, $\Delta f'$, $\Delta f''$	[17,18]	
$R = \sum F_0 - F_c / \sum F_0 $	4.8% für 2970 Reflexe	

Tabelle 2

Bindungsabstände (pm) und -Winkel (°) von $NEt_4[(\eta^5-C_5H_5)Mo(CO)_2Se_2]$

			-	
Mo-Se(1)	259.6(1)	Se(1)-Mo-Se(2)	52.8	_
Mo-Se(2)	259.8(1)	Mo-Se(1)-Se(2)	63.7(0)	
Se(1)-Se(2)	231.0(2)	Mo-Se(2)-Se(1)	63.6(0)	
Mo-C(9)	199.5(8)	Se(1)-Mo-C(9)	83.4(2)	
Mo-C(10)	197.6(10)	Se(1) - Mo - C(10)	113.6(3)	
C(9)-O(2)	101.3(7)	Se(2)-Mo-C(9)	116.7(2)	
C(10)-O(1)	107.8(9)	Se(2)-Mo-C(10)	87.2(3)	
Mo-C(11)	240.7(10)	Mo-C(9)-O(2)	174.3(8)	
Mo-C(12)	232.6(10)	Mo-C(10)-O(1)	173.8(10)	
Mo-C(13)	237.2(10)	C(9)-Mo-C(10)	69.6(4)	
Mo-C(14)	225.9(10)	C(12)-C(11)-C(13)	107 (1)	
Mo-C(15)	230.8(10)	C(11)-C(12)-C(14)	107 (1)	
C(11)-C(12)	137(2)	C(11)-C(13)-C(15)	113 (1)	
C(11)-C(13)	136(2)	C(12)-C(14)-C(15)	109 (1)	
C(12)-C(14)	142(2)	C(13)-C(15)-C(14)	105 (1)	
C(14)-C(15)	139(2)			
C(13)-C(15)	135(1)			
N-C(1)	147.2(9)	N-C(1)-C(2)	113.0(8)	
N-C(3)	147.8(10)	N-C(3)-C(4)	110.1(8)	
N-C(5)	151.3(12)	N-C(5)-C(6)	108.4(10)	
N-C(7)	149.6(12)	N-C(7)-C(8)	119.0(9)	
C(1)-C(2)	159(1)	C(1) - N - C(3)	103.1(7)	
C(3)-C(4)	165(1)	C(1)-N-C(5)	113.3(8)	
C(5)-C(6)	163(2)	C(1)-N-C(7)	111.1(8)	
C(7)-C(8)	148(1)	C(3)-N-C(5)	113.5(9)	
		C(3)-N-C(7)	108.7(9)	
		C(5)-N-C(7)	107.2(9)	

Tabelle 3

Atomkoordinaten und Parameter U für den äquivalenten isotropen Temperaturfaktor $\exp(-8\pi^2 U \sin^2\theta/\lambda^2)$ [19]. U-Werte als 10^{-4} fache in pm² (Å²)

Atom	x	у	z	U
Мо	-0.0367(1)	0.0000	0.1778(1)	0.0449(4)
Se(1)	0.1272(1)	0.2060(1)	0.2870(1)	0.0689(6)
Se(2)	0.2714(1)	0.0715(1)	0.1933(1)	0.0800(7)
C(11)	-0.213(2)	0.143(1)	0.028(1)	0.075(7)
C(12)	-0.312(1)	0.066(2)	0.075(1)	0.091(8)
C(13)	-0.128(1)	0.058(2)	-0.0235(9)	0.081(8)
C(14)	-0.284(2)	-0.069(2)	0.049(1)	0.086(9)
C(15)	-0.165(2)	-0.071(2)	-0.0119(9)	0.083(9)
N	0.6300(8)	0.5076(8)	0.3272(5)	0.046(4)
C(1)	0.609(1)	0.473(1)	0.2044(7)	0.107(9)
C(2)	0.772(1)	0.505(1)	0.1659(8)	0.094(7)
C(3)	0.463(1)	0.474(1)	0.3405(9)	0.114(9)
C(4)	0.464(2)	0.504(1)	0.4757(8)	0.117(8)
C(5)	0.777(2)	0.436(2)	0.413(1)	0.15(1)
C(6)	0.744(2)	0.276(1)	0.396(1)	0.14(1)
C(7)	0.661(2)	0.654(1)	0.348(1)	0.092(9)
C(8)	0.534(1)	0.749(1)	0.2757(9)	0.088(8)
C(9)	0.9132(9)	-0.0301(8)	0.3283(6)	0.035(5)
C(10)	0.060(1)	-0.1717(9)	0.2479(9)	0.049(6)
O(1)	0.112(1)	-0.2688(9)	0.2766(7)	0.083(5)
O(2)	-0.1246(8)	-0.0443(7)	0.4001(5)	0.077(4)

1 wiedergegebene Konfiguration dem von uns ausgewählten Kristall entspricht. Die Chiralität des Anions (im festen Zustand) ergibt sich vor allem aus den recht unterschiedlich langen Mo-C-Abständen des Cyclopentadienylliganden, die von 226 bis 241 pm reichen.

Die Diselenidgruppe ist mit Mo-Se-Abständen von 259.5 und 259.8 pm innerhalb der Fehlergrenze symmetrisch an das Molybdänatom gebunden. In anderen Fällen sind die η^2 -Se₂-Gruppen mit merklich verschieden langen Metall-Selen-Abständen gebunden, z.B. mit 251.7 und 254.6 pm im (PPh₄)₂[W₂Se₉] [5] und mit den sehr verschieden langen V-Se-Bindungen von 240.3 und 259.7 pm im

Fig. 1. Ansicht des $[(\eta^5-C_5H_5)Mo(CO)_2Se_2]^-$ -Ions (ohne H-Atome). Die Ellipsoide der thermischen Schwingung umschreiben den Ort mit 50% Aufenthaltswahrscheinlichkeit bei 18°C.

(NEt₄)₂[V₂Se₁₃] [6]. Die Se-Se-Bindungslänge beträgt im NEt₄[(η^5 -C₅H₅)Mo-(CO)₂Se₂] 231.0 pm; sie ist damit nur etwas kürzer als in den o.g. Fällen, in denen SeSe-Abstände von 233.9 [5] bzw. im Mittel 232.2 pm [6] beobachtet wurden. Noch kürzere Se-Se-Abstände werden in den μ -Se₂-Gruppen enthaltenden Komplexen [Fe₂(CO)₆Se₂] (229.3 pm [11]) und [(η^5 -C₅H₅)₂Cr₂(CO)₄Se₂] (227.7 pm [2]) beobachtet. Legt man die Erwartungswerte von 233.6 pm für eine normale Se-Se-Bindung und 219 pm für eine Se=Se-Doppelbindung [12] zugrunde, so besitzt die Se-Se-Bindung im NEt₄[(η^5 -C₅H₅)Mo(CO)₂Se₂] etwa Einfachbindungscharakter. Eine zum [CpMo(CO)₂Se₂]⁻ analoge Molekülstruktur mit C_s-Symmetrie weist der Disulfidkomplex [CpRe(CO)₂S₂] auf [20]. Vermutlich hat auch der Diselenidkomplex [C₅Me₅Mn(CO)₂Se₂] eine entsprechende Molekülstruktur [20].

Experimenteller Teil

$N(C_2H_5)_4[(\eta^5-C_5H_5)Mo(CO)_2Se_2]$

50 ml einer ethanolischen $(NEt_4)_2 Se_n$ -Lösung mit $n \sim 6$ wird nach [8] aus 1.98 g Na₂Se (15.9 mol) und 5.26 g NEt₄Cl (31.74 mmol) bereitet und nach Filtration von ausgefallenem NaCl mit 12.53 g grauem Selen (158.7 mmol) und 0.1 g Iod zum Lösungsgleichgewicht gebracht. Nach Filtration von unumgesetztem Selen wird diese Lösung direkt verwendet. Man suspendiert in dieser Lösung 3.5 g $[(\eta^5-C_5H_5)Mo(CO)_3]_2$ (Merck) (7.14 mmol) und rührt den Ansatz 7 d. Man erhält 3.0 g eines schwarzen Niederschlags und eine schwarzbraune Lösung, die man auf 10 ml einengt und auf 5°C abkühlt. Es bilden sich 1.0 g schwarze Kristalle, die man mit wenig kaltem Ethanol wäscht und i.Vak. trocknet (14% Ausbeute).

Elementaranalyse: Gef.: C, 35.17; H, 4.98; N, 2.81. $C_{15}H_{25}NO_2MoSe_2$ (505.2) ber.: C, 35.66; H, 4.99; N, 2.77%.

Dank

Dem Fonds der Chemischen Industrie danken wir für grosszügige Förderung.

Literatur

- 1 A.P. Ginsberg, J.H. Osborne und C.R. Sprinkle, Inorg. Chem., 22 (1983) 1781.
- 2 L.Y. Goh, C. Wei und E. Sinn, J. Chem. Soc., Chem. Commun., (1985) 462.
- 3 H. Strasdeit, B. Krebs und G. Henkel, Inorg. Chim. Acta, 89 (1984) L11.
- 4 A.L. Rheingold, C.M. Bolinger und T.B. Rauchfuss, Acta Crystallogr., C42 (1986) 1878.
- 5 R.W.M. Wardle, C.-N. Chau und J.A. Ibers, J. Am. Chem. Soc., 109 (1987) 1859.
- 6 C.-N. Chau, R.W.M. Wardle und J.A. Ibers, Inorg. Chem., 26 (1987) 2740.
- 7 D. Fenske, J. Adel und K. Dehnicke, Z. Naturforsch. B, 42 (1987) 931.
- 8 F. Weller, J. Adel und K. Dehnicke, Z. Anorg. Allg. Chem., 548 (1987) 125.
- 9 G. Wilkinson, J. Am. Chem. Soc., 76 (1954) 209.
- 10 J. Weidlein, U. Müller und K. Dehnicke, Schwingungsfrequenzen II, G. Thieme-Verlag, Stuttgart -New York, 1986.
- 11 C.F. Campana, F.Y.-K. Lo und L.F. Dahl, Inorg. Chem., 18 (1979) 3060.
- 12 A.F. Wells, Structural Inorganic Chemistry, 5th Ed., Clarendon Press, Oxford, 1984.
- 13 A.C.T. North, D.C. Phillips und F.S. Mathews, Acta Crystallogr., A24 (1968) 351.
- 14 U. Müller, CADLP, Programm zur Auswertung und Lp-Korrektur von Diffraktometerdaten, Marburg 1971.
- 15 G.M. Sheldrick, SHELXS-86, Program for the solution of Crystal Structures, Göttingen 1986.

- 16 C.K. Johnson, ORTEP, Report 3794, Oak Ridge National Laboratory, Tennessee 1964.
- 17 D.T. Cromer und J.B. Mann, Acta Crystallogr., A24 (1968) 321.
- 18 D.T. Cromer und D. Liberman, J. Chem. Phys., 53 (1970) 1981.
- 19 W.C. Hamilton, Acta Crystallogr., 12 (1959) 609.
- 20 M. Herberhold, D. Reiner und U. Thewalt, Angew. Chem., 95 (1983) 1028; Angew. Chem. Int. Ed. Engl., 22 (1983) 1000.

-